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Abstract
We apply inverse scattering theory to calculate the functional derivative of the
potential V (x) and wavefunction ψ(x, k) of a one-dimensional Schrödinger
operator with respect to the reflection amplitude r(k).

PACS numbers: 02.30.Zz, 03.65.Db, 03.65.Nk, 02.30.Rz

1. Introduction

The computation of the effect of a perturbation in the potential V (x) of a one-dimensional
Schrödinger operator

H = −∂2
x + V (x) (1.1)

defined on the whole real line on the continuous part of the spectrum of H is a standard (albeit
non-trivial) procedure in perturbation theory. For example, the response of the reflection
amplitude r(k) at momentum k (in a setting where there is source at x = +∞) to an infinitesimal
change in the potential is

δr(k)

δV (x)
= (t (k)φ(x, k))2

2ik
. (1.2)

The derivation of this result is given in the appendix. Here t (k) is the transmission amplitude
and t (k)φ(x, k) is the solution of the Schrödinger equation(−∂2

x + V (x) − k2
)
�(x, k) = 0 (1.3)

which satisfies the scattering boundary conditions of this problem

t (k)φ(x, k) = t (k) e−ikx + o(1) x → −∞
(1.4)

t (k)φ(x, k) = e−ikx + r(k) eikx + o(1) x → ∞.
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Obtaining the kernel inverse to (1.2), i.e., the response of the Schrödinger potential V (x) to a
change in the reflection amplitude r(k), is a much more difficult problem. It arises naturally in
inverse scattering theory (IST) [1–4] in connection with the issue of stability, i.e., the notion
of continuity of the inverse transform in some well-defined sense [5].

This issue of stability was studied, in the framework of the Gelfand–Levitan formulation
[6] of IST, in [7]. In its most general form, one uses the Gelfand–Levitan formalism to
relate the unknown one-dimensional Schrödinger operator, which is to be determined, to an
appropriate prescribed comparison Schrödinger operator, which need not necessarily be the
free Schrödinger operator. The kernel of the resulting Gelfand–Levitan integral equation is
related to the difference of the spectral densities of the two Schrödinger operators. Then, one
can study the case in which the unknown operator is infinitesimally close to the reference
operator, i.e., to study the response of the potential to a perturbation in the spectral density, as
was done in [7]. For example, equation (20.28) in the first reference in [7] gives the functional
derivative of the Schrödinger potential with respect to the spectral density.

The problem of perturbations and stability was later studied also in the framework of
the Marchenko formulation [8] of IST, in the series of papers [9]. The work in these papers
constitutes a generalization of Marchenko’s formulation of IST from the case in which the
transformation kernel connects the unknown Schrödinger operator and the free Schrödinger
operator, to the case in which the former is connected to an appropriate but otherwise arbitrary
comparison Schrödinger operator. One can then study the limit in which the two operators are
infinitesimally separated, as was mentioned above for the Gelfand–Levitan case. (In addition,
it should be mentioned that the work in [9] uses a reformulation of Marchenko’s approach as
a Riemann–Hilbert problem [1, 5].) For discussions of perturbations and stability in IST in
three dimensions see, e.g., [5, 10].

In this paper we obtain the response of the Schrödinger potential V (x), as well as the
response of the wavefunction, to a change in the reflection amplitude r(k), directly from the
Gelfand–Levitan–Marchenko equation1 (formulated for the case in which the transformation
kernel connects the unknown and the free Schrödinger operators), by means of elementary
methods of the theory of Fredholm integral equations.

The explicit formulae we derive in this work express the local response of the potential
and wavefunctions (see (3.13) and (3.15)) to a change in the reflection amplitude. Thus, our
results add to the information which can be gleaned from the well-known trace identities of
[11], the lowest of which reads∫ ∞

−∞
V (x) dx = − 2

π

∫ ∞

0
log[1 − |r(k)|2] dk − 4

N∑
l=1

κl (1.5)

where El = −κ2
l are the N bound state energies (with κl > 0), which tell us only about that

response integrated over space.
A few possibly interesting applications of the results of this paper (which include an

application to supersymmetric quantum mechanics) are mentioned in the conclusions.
It would be useful at this point to introduce some additional notation and recall some basic

facts, which will be used later on. For k real, H −k2 is real, and therefore �∗(x, k) = �(x,−k)

for any solution of (1.3). It follows that

r∗(k) = r(−k) and t∗(k) = t (−k) (1.6)

in (1.4).

1 We refer here to equation (2.6), using the terminology of [1, 4]. In the context of scattering problems on the
half-line (as, e.g., in the case of the radial equation for spherically symmetric potentials), that equation should be
more appropriately referred to as the Marchenko equation.
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�(x, k) and �∗(x, k) are linearly independent solutions of (1.3), and the continuous
spectrum is doubly degenerate at each k2 > 0. In particular, φ(x, k) and φ∗(x, k) form a
basis. Since they are degenerate in energy, their Wronskian is a non-zero constant. Equating
its values at x → ±∞, we obtain the probability conservation relation

|r(k)|2 + |t (k)|2 = 1. (1.7)

An equally suitable basis is the pair of solutions ψ(x, k) and ψ∗(x, k) of (1.3), in which
ψ(x, k) obeys the boundary condition

ψ(x, k) = e−ikx + o(1) x → ∞. (1.8)

Thus, ψ∗(x, k) corresponds to a setting in which there is a source at x = −∞.
We see from (1.4) and (1.8) that

φ(x, k) −→
x→∞

1

t (k)
ψ(x, k) +

r(k)

t (k)
ψ∗(x, k).

This relation must hold for all x, since ψ(x, k) and ψ∗(x, k) form a basis everywhere. Adding
to it the linear combination for φ∗(x, k), we may write the relation between the two bases as(

φ(x, k)

φ∗(x, k)

)
=

(
1

t (k)

r(k)

t (k)

r∗(k)

t∗(k)
1

t∗(k)

)(
ψ(x, k)

ψ∗(x, k)

)
. (1.9)

Note that the transformation matrix has a unit determinant. The inverse transformation is thus(
ψ(x, k)

ψ∗(x, k)

)
=

(
1

t∗(k)
− r(k)

t (k)

− r∗(k)

t∗(k)
1

t (k)

)(
φ(x, k)

φ∗(x, k)

)
. (1.10)

This paper is organized as follows: in the following section we present a lightning review
of inverse scattering theory. In particular, we discuss the Gelfand–Levitan–Marchenko (GLM)
equation and its properties. We show that its solution is simply the boundary column of its
resolvent kernel.

In section 3 we compute the variational derivative of the solution of the Gelfand–Levitan–
Marchenko equation with respect to the reflection amplitude. Then we derive from it the
corresponding derivatives of the potential and wavefunctions (equations (3.13) and (3.15),
respectively) in closed form.

In section 4 we demonstrate the consistency of our results by comparing their integrated
form against known facts.

Finally, in the appendix we provide some useful technical details. In particular, we present
the derivation of (1.2), and also discuss briefly the case of reflectionless potentials.

2. The Gelfand–Levitan–Marchenko equation and its solution

According to inverse scattering theory [1–4], a Schrödinger operator (1.1) whose potential
V (x) tends asymptotically to zero fast enough, such that

∫ ∞
−∞ |V (x)|(1 + |x|) dx < ∞, and

thus supports only a finite number N of bound states, is uniquely determined by the so-called
scattering data. The scattering data are the reflection amplitude r(k), and a finite set of 2N

real numbers

κ1 > κ2 > · · · κN > 0 and c1, c2, . . . cN (2.1)

where El = −κ2
l is the lth bound state energy, and where cl appears in the asymptotic behaviour

of the lth normalized bound state wavefunction as cl exp −κl|x| (and thus determines its ‘centre
of gravity’).
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The prescribed reflection amplitude r(k) can be taken as any complex-valued function
which satisfies (for k real)

r(−k) = r∗(k)

|r(k)| < 1 k �= 0 (2.2)

and

r(k) = O

(
1

k

)
|k| → ∞.

The first two conditions were already mentioned in (1.6) and (1.7), and the third one reflects
the fact that V (x) is a small perturbation at high energy. In addition to these conditions,
there is a less obvious technical condition that the Fourier transform B(x) = ∫ ∞

−∞
r(k)

t (k)
eikx dk

should satisfy the bound
∫ ∞
−∞(1 + |x|)| dB(x)

dx
|dx < ∞. Finally, by analyticity, the transmission

amplitude t (k) is completely determined by r(k) as

t (k)√
1 − |r(k)|2

=
(

N∏
l=1

k + iκl

k − iκl

)
exp

(
1

2π i
P.P.

∫ ∞

−∞

log[1 − |r(q)|2]

q − k
dq

)
. (2.3)

Given the scattering data, IST instructs us to determine a certain real transformation
kernel K(x, y), bounded on the domain y � x, which maps the wavefunctions of the free
Schrödinger operator H0 = −∂2

x onto those of the operator H in (1.1). For example, the left
moving wave e−ikx is mapped onto

ψ(x, k) = e−ikx +
∫ ∞

x

K(x, y) e−iky dy (2.4)

which is evidently the solution of (1.3) satisfying the boundary condition (1.8) mentioned
above. Finally, the potential V (x) in (1.1) is determined by K(x, y) according to

V (x) = −2
d

dx
K(x, x). (2.5)

The kernel K(x, y) is determined as the solution of the Gelfand–Levitan–Marchenko
equation [1–4],

K(x, y) + F(x + y) +
∫ ∞

x

K(x, z)F (z + y) dz = 0 (2.6)

where the real function F(x) is

F(x) =
N∑

l=1

c2
l e−κlx +

1

2π

∫ ∞

−∞
r(k) eikx dk. (2.7)

For fixed x, (2.6) is a Fredholm integral equation of the second type in the unknown
function �(y) = K(x, y),

�(y) = f (y) + λ

∫ ∞

x

N(y, z)�(z) (2.8)

with symmetric real kernel and given function

N(y, z) = N(z, y) = −F(y + z) f (y) = −F(x + y) = N(y, x) (2.9)

respectively, and spectral parameter λ = 1.
It is known that (2.6) has a unique solution, i.e., the Fredholm determinant of (2.8) is

not null at λ = 1 [2, 3]. It is easy to demonstrate this property in the case of reflectionless
potentials (for which r(k) = 0 for all k), as we show in the appendix.
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The unique solution of (2.8) at λ = 1 is given by

�(y) = f (y) +
∫ ∞

x

R(y, z; 1)f (z) dz (2.10)

where R(y, z; λ) is the resolvent kernel of (2.8). Note that for real values of λ, R(y, z; λ) is
manifestly real, when it exists.

It is useful at this point to introduce the operator N̂ and the vectors |�〉 and |f 〉, which
correspond to the kernel N(y, z) and functions �(y) and f (y). Thus, in obvious notation,
N(y, z) = 〈y|N̂ |z〉 = −F(y + z), 〈y|f 〉 = f (y) = 〈y|N̂ |x〉 and �(y) = 〈y|�〉. Then, it is
easy to see from (2.8) that

|�〉 = 1

1 − N̂
|f 〉 = N̂

1 − N̂
|x〉. (2.11)

Similarly, from (2.10) we deduce that R(y, z; 1) = 〈y|R̂|z〉, where

R̂ = 1

1 − N̂
− 1 = N̂

1 − N̂
. (2.12)

Thus, by comparing (2.11) and (2.12), we conclude that |�〉 = R̂|x〉, i.e.,

�(y) = K(x, y) = 〈y|R̂|x〉. (2.13)

The solution of the GLM equation (2.6) coincides with the xth column of its resolvent kernel.
It is manifestly a real function of x and y.

3. The variational derivatives

In view of (2.13), it is straightforward to compute the variation of K(x, y) under small
perturbations in N̂ . Thus, consider a perturbation N̂ → N̂ + δN̂ , which induces the variation
R̂ → R̂ + 1

1−N̂
δN̂ 1

1−N̂
. Consequently δR(y,z;1)

δN(a,b)
= 〈y|(1 + R̂)|a〉〈b|(1 + R̂)|z〉. Thus, from

(2.13)

δK(x, y)

δN(a, b)
= (δ(y − a) + R(y, a; 1))(δ(b − x) + K(x, b)). (3.1)

In this work we are interested in variations δN̂ which result from a change δr(k) in the reflection
amplitude. Due to the first condition in (2.2) we must impose δr(−k) = δr∗(k). Thus, with no
loss of generality, we take the positive components r(k), k � 0 as the independent functional
variables. Keeping that in mind, we obtain from (2.7) and (2.9) that

δN(a, b)

δr(k)
= − 1

2π
eik(a+b). (3.2)

Thus, from (3.1) and (3.2) we obtain

δK(x, y)

δr(k)
=

∫ ∞

x

δK(x, y)

δN(a, b)

δN(a, b)

δr(k)
da db

= − 1

2π

(
eiky +

∫ ∞

x

R(y, a; 1) eika da

) (
eikx +

∫ ∞

x

K(x, b) eikb db

)
. (3.3)

From (2.4) and from the reality of K(x, y) and k, we recognize the last factor in (3.3) simply
as ψ∗(x, k). Thus,

δK(x, y)

δr(k)
= − 1

2π

(
eiky +

∫ ∞

x

R(y, a; 1) eika da

)
ψ∗(x, k). (3.4)
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In order to simplify (3.4) further, we have to study the function

ω(y, x; k) =
∫ ∞

x

R(y, a; 1) eika da. (3.5)

Observe from (2.10) (considered with a generic given function f (y)), that �(y, x; k) =
eiky + ω(y, x; k) is the unique solution of the Fredholm equation �(y, x; k) = eiky +∫ ∞
x

N(y, z)�(z, x; k) dz, from which we infer that ω(y, x; k) is the unique solution of

ω(y, x; k) = −G(y, x; k) +
∫ ∞

x

N(y, z)ω(z, x; k) dz (3.6)

where

G(y, x; k) =
∫ ∞

x

F (y + z) eikz dz. (3.7)

Thus, ∂xω(y, x; k) satisfies

∂ω(y, x; k)

∂x
= F(x + y)(eikx + ω(x, x; k)) +

∫ ∞

x

N(y, z)
∂ω(z, x; k)

∂x
dz. (3.8)

From (3.5), (2.13) and the fact that R(y, z; 1) = R(z, y; 1), we obtain that ω(x, x; k) =∫ ∞
x

R(a, x; 1) eika da = ∫ ∞
x

K(x, a) eika da. Thus, the inhomogeneous term in (3.8) is simply
F(x + y)

(
eikx +

∫ ∞
x

K(x, a) eika da
) = F(x + y)ψ∗(x, k) = −f (y)ψ∗(x, k), where we used

(2.4). It is the given function f (y) in (2.8) multiplied by a y-independent factor −ψ∗(x, k).
Thus, from linearity, the unique solution of (3.8) is simply the solution of (2.8), multiplied by
the same factor, namely,

∂ω(y, x; k)

∂x
= −K(x, y)ψ∗(x, k). (3.9)

The initial condition for this equation at x = y is obviously ω(y, y; k) = ∫ ∞
y

K(y, a) eika da =
ψ∗(y, k) − eiky . Thus,

ω(y, x; k) =
∫ y

x

ψ∗(z, k)K(z, y) dz + ψ∗(y, k) − eiky . (3.10)

Substituting this result into (3.4) we obtain our first main result

δK(x, y)

δr(k)
= − 1

2π

(
ψ∗(y, k) +

∫ y

x

ψ∗(z, k)K(z, y) dz

)
ψ∗(x, k). (3.11)

Since K(x, y) is a real kernel, we can write (3.11) alternatively as

δK(x, y)

δr∗(k)
= − 1

2π

(
ψ(y, k) +

∫ y

x

ψ(z, k)K(z, y) dz

)
ψ(x, k). (3.12)

The formula for δK(x,y)

δr∗(k)
is the key for obtaining the functional derivatives of the wavefunction

ψ(x, k) and potential V (x) with respect to the reflection amplitude r(k), since the former are
linear in K(x, y). Thus, from (2.5) and (3.12) we obtain our second main result

δV (x)

δr∗(k)
= −2

d

dx

δK(x, x)

δr∗(k)
= 1

π

d

dx
ψ2(x, k). (3.13)

This equation is very similar to equation (20.28) of the first reference in [7], which was derived
in a different manner than ours, as was discussed in the introduction.

Similarly, from (2.4) and (3.12) we obtain

δψ(x, k)

δr∗(q)
= − 1

2π

[∫ ∞

x

e−iky

(
ψ(y, q) +

∫ y

x

ψ(z, q)K(z, y) dz

)
dy

]
ψ(x, q). (3.14)
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Reversing the order of integrations in the second integral according to∫ ∞

x

e−iky

(∫ y

x

ψ(z, q)K(z, y) dz

)
dy =

∫ ∞

x

ψ(z, q)

(∫ ∞

z

e−ikyK(z, y) dy

)
dz

and recognizing the y-integral on the right-hand side of the last equation as∫ ∞
z

e−ikyK(z, y) dy = ψ(z, k) − e−ikz, we obtain from (3.14) our third main result

δψ(x, k)

δr∗(q)
= − 1

2π

(∫ ∞

x

ψ(z, q)ψ(z, k) dz

)
ψ(x, q). (3.15)

It is interesting to note that both (3.13) and (3.15) are expressed purely in terms of the
wavefunction ψ(x, k). Note, however, that (3.13) is local in ψ , whereas (3.15) is highly
nonlocal. It would be interesting to interpret these features from a physical point of view.

4. Consistency checks of (3.13) and (3.15)

The integrated form of (3.13) should agree with the derivative δ
δr∗(k)

∫ ∞
−∞ V (x) dx obtained

from the trace identity (1.5). Note that (1.5) is expressed purely in terms of the positive
Fourier modes of r(k), the independent functional variables in our problem. Thus, taking the
derivative of (1.5), we obtain

δ

δr∗(k)

∫ ∞

−∞
V (x) dx = − 2

π

δ

δr∗(k)

∫ ∞

0
log[1 − |r(q)|2] dq = 2

π

r(k)

|t (k)|2 (4.1)

where we used |t (k)|2 = 1−|r(k)|2. This result should be confronted with the integrated form
of (3.13). We obtain from the latter

δ

δr∗(k)

∫ ∞

−∞
V (x) dx = 1

π
lim

L→∞
[ψ2(x, k)]L−L. (4.2)

From (1.8) we observe that ψ(L, k) � e−ikL. Similarly, from (1.10) and (1.4) we deduce the
asymptotic behaviour

ψ(−L, k) � 1

t∗(k)
eikL − r(k)

t (k)
e−ikL. (4.3)

Substituting (4.3) and ψ(L, k) � e−ikL in (4.2), we obtain

δ

δr∗(k)

∫ ∞

−∞
V (x) dx = 1

π
lim

L→∞

[
e−2ikL

(
1 − r2

t2

)
− 1

(t∗)2
e2ikL +

2r

|t |2
]

(4.4)

which coincides in the limit with (4.1) in the sense of distributions, since the first two rapidly
oscillating terms on the right-hand side of (4.4), when smeared against any continuous bounded
test function U(k), will integrate to zero in the limit L → ∞, due to the Riemann–Lebesgue
lemma. Thus, (3.13) has passed its first test.

A less trivial test of (3.13) arises from comparing the complex conjugate equation of
(3.13), δV (x)

δr(k)
= 1

π
d

dx
ψ∗2(x, k) and (1.2). We see that one kernel is the inverse of the other:∫ ∞

−∞
δr(k)

δV (x)

δV (x)

δr(q)
dx = δ(k − q). Thus, we must verify that

�(k, q) = t2(k)

2π ik

∫ ∞

−∞
φ2(x, k)

d

dx
ψ∗2(x, q) dx (4.5)

is equal to δ(k − q). Using the identity∫ ∞

−∞
F 2 d

dx
G2 dx = 1

2
[(FG)2]∞−∞ +

∫ ∞

−∞
FG(F∂xG − G∂xF ) dx
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with F = φ(x, k) and G = ψ∗(x, q), we write (4.5) as

�(k, q) = t2(k)

2π ik

{
1

2
[(φ(x, k)ψ∗(x, q))2]∞−∞ +

∫ ∞

−∞
φ(x, k)ψ∗(x, k)W(x, k, q) dx

}
(4.6)

where

W(x, k, q) = φ(x, k)∂xψ
∗(x, q) − ψ∗(x, q)∂xφ(x, k) (4.7)

is the Wronskian of φ(x, k) and ψ∗(x, q). Next, from the Schrödinger equation for these two
functions it is easy to obtain the relation

φ(x, k)ψ∗(x, q) = 1

k2 − q2
∂xW(x, k, q). (4.8)

Substituting the last equation in (4.6) we see that the integral is given entirely by boundary
terms as

�(k, q) = t2(k)

4π ik

[
(φ(x, k)ψ∗(x, q))2 +

1

k2 − q2
W 2(x, k, q)

]∞

−∞
. (4.9)

In order to proceed in the clearest and simplest way, we shall make a few observations.
First, observe from (1.4), (1.8) and (4.3) that the difference (φ(L, k)ψ∗(L, q))2 −
(φ(−L, k)ψ∗(−L, q))2 is rapidly oscillating in the limit L → ∞ for all k, q. Thus, as a
distribution acting on bounded continuous functions of k and q it tends to zero. Thus, we should
focus on the second term. When k2 − q2 �= 0, the difference W 2(L, k, q) − W 2(−L, k, q)

oscillates rapidly, and tends to zero, in the sense of distributions, in the limit L → ∞, similar
to the first term. Recall that for k2 = q2, i.e., when φ(x, k) and ψ∗(x, q) correspond to the
same energy, W(x, k, q) is a constant, and thus cannot oscillate. In that case, however, the
denominator in front of this term vanishes. Thus we should study the limit q2 → k2 carefully.

Let us concentrate then on the region k2 � q2. Since we have taken the positive Fourier
modes of r(k) as the independent functional variables, it is enough to study the case q → k.
Thus, assuming k − q = ε with | ε

k
| � 1 and setting k + q � 2k, we obtain from (1.4), (1.8)

and (4.3) that

W(L, k, k − ε) � i

t (k)
(2k e−iεL − εr(k) e2ikL)

(4.10)

W(−L, k, k − ε) � i

t (k)

(
2k eiεL − εt (k)

r∗(k)

t∗(k)
e2ikL

)
.

Substituting (4.10) and k2 − q2 � 2kε in (4.9), and recalling the first observation made right
below (4.9), we finally obtain

�(k, q) = sin(2εL)

πε
+ ROT (4.11)

where the acronym ROT stands for the rapidly oscillating terms that tend to zero in the
sense of distributions. The first term tends of course to δ(k − q) as L → ∞, as desired.
Equation (3.13) has passed the second check!

Our last consistency check concerns (3.15). The point is that for x → −∞, the integral
on the right-hand side of (3.15) is the orthogonality relation∫ ∞

−∞
ψ(z, q)ψ(z, k) dz = 2π

|t (k)|2 (δ(k + q) − r(k)δ(k − q)). (4.12)

Let us sketch the proof of (4.12): in analogy with (4.8) we deduce that

ψ(x, k)ψ(x, q) = 1

k2 − q2
∂xW̃ (x, k, q) (4.13)
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where

W̃ (x, k, q) = ψ(x, k)∂xψ(x, q) − ψ(x, q)∂xψ(x, k) (4.14)

is the Wronskian of the functions involved. Then, after integration, we obtain∫ L

−L

ψ(z, q)ψ(z, k) dz = 1

k2 − q2
[W̃ (L, k, q) − W̃ (−L, k, q)]

and consider this result as L → ∞, using the asymptotic behaviour (1.8) and (4.3). For
generic values of k, q, the difference of Wronskians is a rapidly oscillating function, which as
a distribution, tends to zero as L → ∞. As in the previous discussion, we observe that when
k2 = q2, W̃ (x, k, q) is independent of x, and thus does not oscillate. By studying the limit
q → ±k carefully, we deduce (4.12).

On the left-hand side of (3.15) we have

δψ(−L, k)

δr(−q)
= δ

δr(−q)

(
1

t (−k)
eikL − r(k)

t (k)
e−ikL

)
(4.15)

where we used (4.3). Then, from (2.3) it follows that

δt−1(k)

δr(p)
= 1

2t (k)

r∗(p)

|t (p)|2
[
δ(p − k) + δ(p + k) +

1

iπ
P.P.

(
1

p − k
− 1

p + k

)]

= 1

2π it (k)

r∗(p)

|t (p)|2
(

1

p − k − iε
− 1

p + k + iε

)
. (4.16)

Applying (4.16) to (4.15), and studying the resulting expression around k � q > 0, we find
(keeping only the singular terms) 1

2πε

r(k)

|t (k)|2 ψ(−L, k), in accordance with the right-hand side
of (3.15) and (4.12).

5. Summary and conclusions

In this paper we have derived explicit and relatively simple expressions for the functional
derivatives of the Gelfand–Levitan–Marchenko kernel K(x, y), the Schrödinger potential
V (x) and wavefunction ψ(x, k), with respect to the reflection amplitude r(k) (equations (3.12),
(3.13) and (3.15), respectively). These formulae passed some simple consistency checks.

Our derivation was based on the Gelfand–Levitan–Marchenko equation (2.6) (for the case
in which K(x, y) connects the eigenstates of the free and the unknown Schrödinger operators)
and on elementary methods of the theory of Fredholm integral equations. Our work adds
to previous results in the IST for perturbations, which were obtained by somewhat different
techniques [7, 9].

A possibly interesting application of the results of this paper might be the investigation
of perturbations around reflectionless potentials with arbitrary numbers of bound states [12],
which play an important role in supersymmetric quantum mechanics [13] and the theory
of solitons. Reflectionless Schrödinger potentials can be constructed by purely algebraic
methods, and essentially all important physical quantities in such systems can be computed
explicitly. Thus, they serve as ideal models to perturb around. Our results offer the possibility
of performing explicitly calculable perturbation theory around these models, with a very
non-trivial (and in particular, non-local) perturbation, namely, turning on a small reflection
amplitude. Finally, the present work might be useful in studying static quantum field theoretic
solitons in one spatial dimension, which are subjected to external local forces.
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Appendix. Miscellaneous technical details

A.1. Perturbation theory in the continuum: proof of (1.2)

Consider a perturbation δV (x) of the Schrödinger equation (1.3). To make the problem well
defined, we assume that δV (x) is localized around some point x0.

Under this perturbation, the solution of (1.3) will be shifted �(x) → �(x) + δ�(x), and
our task is to compute δ�(x) to first order in δV (x). To this order, we have to solve the
equation

(H − k2)δ�(x, k) = −δV (x)�(x, k). (A.1)

The general solution is given in terms of the Green function G(x, y; k) of the operator H − k2

(defined with the appropriate boundary conditions) as

δ�(x, k) = −
∫ ∞

−∞
G(x, y; k)δV (y)�(y, k) dy. (A.2)

Since this expression vanishes for δV (y) = 0, there is no term which is a solution of the
homogeneous equation.

The proper Green function is that which decays exponentially whenever one of its
coordinate arguments tends to ±∞, when k is lifted to the upper half complex plane. There is
such a unique Green function

G(x, y; k) = 1

w(k)
[θ(x − y)ψ∗(x, k)φ(y, k) + θ(y − x)ψ∗(y, k)φ(x, k)] (A.3)

where

w(k) = −W(x, k, k) = 2k

it (k)
(A.4)

from (4.7). Thus, in particular, for �(x, k) = φ(x, k) we obtain

δφ(x, k) = − 1

w

[
ψ∗(x, k)

∫ x

−∞
φ(y, k)δV (y)φ(y, k) dy

+ φ(x, k)

∫ ∞

x

ψ∗(y, k)δV (y)φ(y, k) dy

]
. (A.5)

In the limit x → −∞, we see that

δφ(x, k) → −φ(x, k)

w

∫ ∞

−∞
ψ∗(y, k)δV (y)φ(y, k) dy. (A.6)

Thus, the function

φ̃(x, k) = φ(x, k) + δφ(x, k)

1 − 1
w

∫ ∞
−∞ ψ∗(y, k)δV (y)φ(y, k) dy

(A.7)

tends to e−ikx as x → −∞, and should be identified with the ‘φ-function’ (1.4) of the perturbed
potential V (x) + δV (x). In (A.7) we should keep, of course, only terms up to linear order in
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δV (x). As x → ∞, we see from (A.5), (1.4) and (1.8) that φ̃(x, k) → 1
t̃ (k)

e−ikx + r̃(k)

t̃(k)
eikx ,

where t̃ (k) and r̃(k) are the new scattering amplitudes, given by

1

t̃ (k)
= 1

t (k)

[
1 +

1

w

∫ ∞

−∞
ψ∗(y, k)δV (y)φ(y, k) dy

]
(A.8)

r̃(k)

t̃(k)
= r(k)

t (k)

[
1 +

1

w

∫ ∞

−∞

(
ψ∗(y, k) − t (k)

r(k)
φ(y, k)

)
δV (y)φ(y, k) dy

]
from which we infer, after some simple algebra, involving (1.9) that

δr(k) = r̃(k) − r(k) = 1

2ik

∫ ∞

−∞
(t (k)φ(y, k))2δV (y) dy (A.9)

from which (1.2) follows.

A.2. Reflectionless potentials

We demonstrate in the following the positivity of the Fredholm determinant of the GLM
equation (2.6) in the case of reflectionless potentials.

For reflectionless potentials, where r(k) ≡ 0, N(y, z) = −∑N
l=1 c2

l e−κl (y+z) in (2.8) is
a degenerate kernel of finite rank N. Thus, the integral equation degenerates into a system of
linear equations, and the Fredholm determinant becomes an N-dimensional determinant. For
this reason, reflectionless potentials are so easy to treat within the formalism of IST.

The Fredholm determinant (at λ = 1) is given by (c1 . . . cN)2 det A, where

Amn = δmn +
cmcn

κn + κm

e−(κn+κm)x . (A.10)

This matrix is a member of a family of matrices of the general form

A(ν)
mn = δmn +

vmvn

(κn + κm)ν
(A.11)

where vn are the components of a real vector and ν a real number. (Recall also that all κn > 0.)
The matrix (A.10) corresponds, of course to vn = cn e−κnx and ν = 1. It is easy to demonstrate
that (A.11) is a positive definite matrix for any ν � 0. To prove this (for ν > 0, the case ν = 0
being trivial), it is enough to verify that ξT Aξ > 0 for any real vector ξ . Thus, consider

ξT Aξ = ξT ξ +
∑
n,m

ξnvnξmvm

(κn + κm)ν

= ξT ξ +
1

�(ν)

∫ ∞

0
sν−1

(
N∑

n=1

ξnvn e−κns

)2

ds � 0 (A.12)

manifestly. Thus, in particular, (A.10) is positive definite and so is the corresponding Fredholm
determinant.
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